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Multitemporal lidar captures heterogeneity 
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Benjamin C. Bright1*   , Andrew T. Hudak1, T. Ryan McCarley2, Alexander Spannuth3, Nuria Sánchez‑López2, 
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Abstract 

Background:  Characterization of physical fuel distributions across heterogeneous landscapes is needed to under‑
stand fire behavior, account for smoke emissions, and manage for ecosystem resilience. Remote sensing measure‑
ments at various scales inform fuel maps for improved fire and smoke models. Airborne lidar that directly senses 
variation in vegetation height and density has proven to be especially useful for landscape-scale fuel load and con‑
sumption mapping. Here we predicted field-observed fuel loads from airborne lidar and Landsat-derived fire history 
metrics with random forest (RF) modeling. RF models were then applied across multiple lidar acquisitions (years 2012, 
2019, 2020) to create fuel maps across our study area on the Kaibab Plateau in northern Arizona, USA. We estimated 
consumption across the 2019 Castle and Ikes Fires by subtracting 2020 fuel load maps from 2019 fuel load maps and 
examined the relationship between mapped surface fuels and years since fire, as recorded in the Monitoring Trends in 
Burn Severity (MTBS) database.

Results:  R-squared correlations between predicted and ground-observed fuels were 50, 39, 59, and 48% for available 
canopy fuel, 1- to 1000-h fuels, litter and duff, and total surface fuel (sum of 1- to 1000-h, litter and duff fuels), respec‑
tively. Lidar metrics describing overstory distribution and density, understory density, Landsat fire history metrics, 
and elevation were important predictors. Mapped surface fuel loads were positively and nonlinearly related to time 
since fire, with asymptotes to stable fuel loads at 10–15 years post fire. Surface fuel consumption averaged 16.1 and 
14.0 Mg ha− 1 for the Castle and Ikes Fires, respectively, and was positively correlated with the differenced Normalized 
Burn Ratio (dNBR). We estimated surface fuel consumption to be 125.3 ± 54.6 Gg for the Castle Fire and 27.6 ± 12.0 Gg 
for the portion of the Ikes Fire (42%) where pre- and post-fire airborne lidar were available.

Conclusions:  We demonstrated and reinforced that canopy and surface fuels can be predicted and mapped with 
moderate accuracy using airborne lidar data. Landsat-derived fire history helped account for spatial and temporal 
variation in surface fuel loads and allowed us to describe temporal trends in surface fuel loads. Our fuel load and 
consumption maps and methods have utility for land managers and researchers who need landscape-wide estimates 
of fuel loads and emissions. Fuel load maps based on active remote sensing can be used to inform fuel management 
decisions and assess fuel structure goals, thereby promoting ecosystem resilience. Multitemporal lidar-based con‑
sumption estimates can inform emissions estimates and provide independent validation of conventional fire emission 

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Fire Ecology

*Correspondence:  benjamin.c.bright@usda.gov

1 Rocky Mountain Research Station, USDA Forest Service, 1221 S Main Street, 
Moscow, ID 83843, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-8363-0803
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42408-022-00142-7&domain=pdf


Page 2 of 16Bright et al. Fire Ecology           (2022) 18:18 

Background
Land managers and researchers require fuel load meas-
urements to manage fuels for ecosystem resilience 
(Covington et al. 1994; Graham et al. 2004), predict fire 
behavior (Countryman 1972; Alexander and Cruz  2013; 
Keane 2015), and quantify fire emissions (Seiler and 

Crutzen 1980; Leenhouts 1998; French et  al. 2004). 
Remote sensing data can facilitate spatially explicit esti-
mates of fuel loads that would be difficult to obtain from 
inherently high heterogeneity fuel distributions that are 
impractical to characterize from in  situ measurements 
alone (Keane et al. 2001; Arroyo et al. 2008; Keane 2015). 

inventories. Our methods also provide a remote sensing framework that could be applied in other areas where air‑
borne lidar is available for quantifying relationships between fuels and time since fire across landscapes.

Keywords:  Forest fuels, Canopy fuels, Surface fuels, Fuel mapping, Fuel consumption, Post-fire fuel dynamics, Remote 
sensing, Airborne lidar

Resumen 

Antecedentes:  La caracterización de la distribución física de los combustibles a través de paisajes heterogéneos es 
necesaria para entender el comportamiento del fuego, contabilizar las emisiones de humo, y manejar los ecosistemas 
para su resiliencia. Las mediciones mediante sensores remotos a varias escalas, aportan mapas para mejorar mod‑
elos de fuegos y dispersión de humos. Las mediciones con LIDAR aerotransportados que determinan directamente 
variaciones en altura y densidad de la vegetación, han probado ser especialmente útiles para el mapeo de la carga 
y el consumo de combustible a escala de paisaje. Predijimos la carga de combustibles en la planicie de Kaibab en el 
norte de Arizona, en los EEUU, estimamos el consumo a través de los incendios de Castle e Ikes de 2019, mediante la 
substracción de la carga de mapas de carga del 2020 menos los de 2019, y examinamos las relaciones entre el mapeo 
de los combustibles superficiales y años desde el fuego, registrados en la base de datos titulada Monitoreo de las 
Tendencias de la Severidad de los incendios (MTBS).

Resultados:  Las correlaciones de R2 entre valores de cargas predichos y aquellos de observaciones de campo fueron 
50, 39, 59, y 48% para combustible disponible en el dosel, combustibles de 1 a 1000 h, mantillo y hojarasca por debajo 
del mantillo (duff ), y combustible total superficial (la suma de combustibles de 1 a 1000 h y del mantillo y la hojarasca 
subyacente), respectivamente. Las medidas del LIDAR que describían la distribución del dosel y su densidad, la densi‑
dad del sotobosque, las medidas históricas de fuego provistas por el Landsat y la altura (elevación) fueron predictores 
importantes. Las cargas de combustibles mapeadas fueron positivamente y no linealmente relacionadas al tiempo 
desde el fuego, con asíntotas hacia cargas de combustible estables entre 10 y 15 años post fuego. El consumo de la 
carga de combustibles en superficie promedió 16,1 y 14,0 Mg por ha para los incendios de Castle e Ikes, respectiva‑
mente y fue positivamente correlacionada con la diferencia normalizada de la relación de quema (dNBR). Estimamos 
que el consumo del combustible superficial fue de 125,3 ± 54,6 Gg para el incendio de Castle y 27,6 ± 12,0 Gg para 
la porción del incendio de Ikes (42%), del cual los datos de LIDAR aerotransportados (pre y post fuego), estaban 
disponibles.

Conclusiones:  Demostramos y reforzamos que tanto el dosel como los combustibles superficiales pueden ser predi‑
chos y mapeados con una moderada precisión usando datos de LIDAR aerotransportados. Las medidas históricas de 
fuego provistas por el Landsat ayudaron a determinar la variación espacial y temporal de la carga de los combustibles 
superficiales y nos permitieron describir tendencias temporales en las cargas de combustible superficiales. Nuestros 
mapas y métodos de consumo y cargas de combustible son de utilidad para los gestores de recursos e investiga‑
dores que necesitan de estimaciones amplias de carga de combustible y emisiones a escala de paisaje. Los mapas de 
carga de combustibles basados en sensores remotos activos pueden ser usados para informar sobre decisiones de 
manejo de combustible y determinar metas de estructuras de cargas, promoviendo de esa manera la resiliencia del 
ecosistema. Las estimaciones de consumo basadas en LIDAR multitemporal pueden informar sobre estimaciones de 
emisiones y proveer de una validación de inventarios convencionales de emisiones por fuegos. Nuestros métodos 
también proveen de un marco conceptual de sensores remotos que pueden ser aplicados en otras áreas donde el 
LIDAR aerotransportado está disponible para cuantificar relaciones entre combustibles y tiempo desde el fuego en 
diferentes paisajes.
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Integrated modeling methodologies often involve relating 
in  situ measurements of fuel loads, such as tallies along 
transects (Brown 1974) or destructive samples (Hawley 
et al. 2018), to remotely sensed data and other ancillary 
data sources that provide synoptic coverage (Keane et al. 
2001). For many applications, such as landscape-level 
management of fuels, fuel load estimates at coarser spa-
tial scales (20 to 30 m) are sufficient and perhaps pre-
ferred (e.g., Rollins 2009; Reeves et  al. 2009). For some 
recent fire science investigations using physically based 
models, more highly resolved, three-dimensional repre-
sentations of fuel loads are needed to better model and 
understand fire behavior (Hiers et al. 2009, 2020; Rowell 
et al. 2016). Because fuels are dynamic in space and time, 
especially following disturbance, methods that quantify 
the relationship between fuel loads and time since distur-
bance are needed to monitor and model fuel accumula-
tion across landscapes. Methods modeling the dynamic 
relationships between disturbance and fuel loading over 
space and time can alleviate the need for annual fuel 
loading monitoring efforts. Such methods can also help 
wildland fire managers assess potential fire behavior with 
geospatial fire history information which is common in 
many national forests around the United States. Mapping 
and assessing the heterogeneous fuel loading trajectories 
across a given landscape can help planning efforts aimed 
at preventing undesirable impacts to human and natural 
communities.

Light detection and ranging (lidar) actively meas-
ures live and dead vegetation structure and is therefore 
particularly well-suited, relative to passive optical sen-
sors, for quantifying forest fuel loads at various spatial 
scales and height strata (Arroyo et  al. 2008); common 
fuel strata definitions include canopy, shrub, herba-
ceous, downed woody, litter, and duff layers (Ottmar 
et  al. 2007). Terrestrial lidar, in which the lidar sen-
sor is mounted on or near ground level, has been used 
to estimate canopy, shrub, and herbaceous fuel loads at 
fine spatial scales (spatial resolutions of 1 m or less, e.g., 
Loudermilk et  al. 2009; Skowronski et  al. 2011; Hudak 
et al. 2020, Rowell et al. 2020). To generate coarser-scale 
fuel load maps (spatial resolutions of 20 m or greater) 
of various fuel strata across landscapes, airborne lidar 
is commonly used (e.g., Andersen et  al. 2005; Erdody 
and Moskal  2010; Hermosilla et  al. 2013; Hudak et  al. 
2015, 2016). Spaceborne lidar has also been applied to 
mapping of various fuel strata (e.g., García et  al. 2012; 
Peterson et  al. 2013; Leite et  al. 2022). When pre- and 
post-fire lidar data are available, fuel load estimates can 
be differenced to estimate consumption (McCarley et al. 
2020; Hudak et al. 2020), which can be useful for inves-
tigating fire effects and fuel-fire-emissions relationships 
(Hudak et al. 2015; McCarley et al. 2020).

Previous studies using airborne and spaceborne lidar 
for fuel load estimation have most often predicted can-
opy fuel loads. Subcanopy (shrub, herbaceous, downed 
woody, litter, and duff) fuel loads have been predicted 
less often and less accurately (Seielstad and Queen 2003; 
Pesonen et al. 2008; Jakubowski et al. 2013; Hudak et al. 
2015, 2016; Price and Gordon 2016; Bright et  al. 2017; 
Stefanidou et al. 2020; McCarley et al. 2020; Mauro et al. 
2021; Alonso-Rego et al. 2021; Leite et al. 2022). Limita-
tions to measuring subcanopy fuels include (1) occlusion 
and attenuation by the overstory so that near-ground fuel 
structure is sampled unreliably, (2) insufficient horizontal 
point density and/or vertical accuracy (often ~ 15 cm) to 
quantify near-surface fuel heights, (3) inability to directly 
measure litter and duff depth, and (4) the often intrinsic, 
high heterogeneity of subcanopy fuels across space that 
makes reliable in  situ sampling and therefore modeling 
difficult (Keane et  al. 2001; Keane 2015). Despite these 
challenges, previous studies have reported useful predic-
tion accuracies and have concluded that subcanopy fuel 
load estimates derived from airborne and spaceborne 
lidar have utility for managers.

Here we predicted and mapped available canopy fuel 
(foliage weight plus 50% of small branch weight) and 
surface fuels (downed woody, litter, and duff) across a 
landscape in northern Arizona, USA, using in  situ field 
observations, multitemporal airborne lidar, and Landsat-
derived fire history metrics (number of past fires (NPF) 
and years since fire (YSF)). By differencing pre- and post-
fire fuel load maps, we estimated fuel consumption for 
two fires, the Castle and Ikes Fires of 2019. Few previous 
studies have estimated fuel consumption across a land-
scape with multitemporal airborne lidar (e.g., Wang and 
Glenn 2009; Alonzo et al. 2017; Hoe et al. 2018; Hu et al. 
2019; Skowronski et al. 2020; McCarley et al. 2020). We 
also examine the relationship between lidar-derived sur-
face fuel load maps and fire history and present a remote 
sensing framework for quantifying temporal dynamics in 
surface fuel accumulation, which, to our knowledge, no 
previous study has done.

Methods
Study area
Our study area spanned the Kaibab Plateau on the north 
rim of the Grand Canyon in northern Arizona, USA 
(Fig.  1), which is administered by the United States 
National Park Service (USNPS) and United States For-
est Service (USFS). Annual precipitation increases with 
elevation to dictate dominant vegetation type across the 
plateau, with shrublands occurring at lower elevations 
(minimum of 860 m in our study area), woodlands occur-
ring at intermediate elevations, and forests occurring at 
higher elevations (maximum of 2800 m in our study area). 
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Forest types across the plateau, in order of ascending ele-
vation, include piñon-juniper woodlands (Pinus edulis 
Engelm., Pinus monophylla Torr. & Frem., Juniperus oste-
osperma (Torr.) Little, approx. 1370–2290 m), ponderosa 
pine woodlands and forests (Pinus ponderosa Lawson 
& C. Lawson, approx. 1950–2600 m), and mixed conifer 
forest (Pinus ponderosa, Pseudotsuga menziesii [Mirb.] 
Franco, Picea engelmannii Parry ex Engelm., Abies lasi-
ocarpa [Hook.] Nutt., Abies concolor (Gord. & Glend.) 
Lindl. ex Hildebr., Picea pungens Engelm., Populus trem-
uloides Michx., approx. 2380–3000 m), with spruce-fir 
forests (Picea engelmannii, Abies lasiocarpa, approx. 
>2500 m) dominating the highest elevations (United 
States Department of the Interior (USDOI) National 
Park Service 2010). At lower elevations at the base of the 
plateau, annual precipitation averages 370 mm, sum-
mer maximum temperatures average 19.4 °C, and win-
ter minimum temperatures average 4.5 °C; at higher 
elevations on the plateau, annual precipitation aver-
ages 710 mm, summer maximum temperatures aver-
age 14.3 °C, and winter minimum temperatures average 
− 0.3 °C (30-year normals for 1981–2010; https://​
prism.​orego​nstate.​edu/​norma​ls/). Wildfire frequents 
the plateau (Fig.  1). In general, fires have historically 
been more frequent and lower in severity in ponderosa 

pine forest, and less frequent and of mixed severity in 
higher elevation forest types (Fulé et al. 2003a, b). Both 
planned and unplanned fire events are being used to 
restore ecosystem resilience and function to these fire-
adapted ecosystems. Kaibab National Forest managers 
are actively restoring historic fire return intervals in 
ponderosa pine (Fire Regime I, 0–35 years) and mixed 
conifer (Fire Regimes III, IV, V, 35–200 years) forests of 
the Kaibab Plateau (USDA Forest Service 2014, 2020).

Field observations
The USNPS and USFS maintain a field plot network to 
monitor and assess fire effects on vegetation and fuels 
within Grand Canyon National Park and the adjoin-
ing Kaibab National Forest (USDOI National Park Ser-
vice  2010); field plot data are shared between the two 
federal agencies. Overstory trees are monitored on 
fixed-radius plots (area = 0.03 ha, radii = 10 m). For each 
tree with a diameter at breast height (DBH) > 15 cm, the 
following is periodically recorded: status (live or dead), 
DBH, species, height, live crown base height, and crown 
class (dominant, codominant, intermediate, subcan-
opy). Surface (downed woody, litter, and duff) fuels are 
monitored using one or two 15.24-m (50-ft) transects, 
with one end of the transect located at the center of the 

Fig. 1  The Kaibab Plateau in northern Arizona overlaid with airborne lidar extents and past fire perimeters from the Monitoring Trends in Burn 
Severity (MTBS) database. The 2020 lidar was two parcels acquired across the entire 2019 Castle Fire (within the northern 2020 lidar polygon) and a 
portion of the 2019 Ikes Fire (within the southern 2020 lidar rectangle). True-color background imagery is from Landsat 8

https://prism.oregonstate.edu/normals/
https://prism.oregonstate.edu/normals/
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fixed-radius overstory plots. Both 1-h and 10-h fuels are 
measured along the first 1.83 m (6 ft) of transects, 100-h 
fuels are measured along the first 3.66 m (12 ft) of tran-
sects, and 1000-h fuels are measured along the entire 
length of the transects. Litter and duff depth are recorded 
at every 1.52 m (5 ft) along the length of transects. Tran-
sect starting point locations are recorded with profes-
sional-grade GNSS receivers and differentially corrected, 
resulting in expected horizontal accuracies of < 1 m. 
Overstory fixed-radius plot centers can be derived from 
these transect starting point locations.

We used a subset of overstory tree (N = 69) and surface 
fuel (N = 153) plot data that were spatially and tempo-
rally coincident (field observations taken within 2 years of 
airborne lidar acquisition) with 2012 and 2019 airborne 
lidar data for model development. Plots disturbed by 
fire between time of field measurement and lidar acqui-
sition were not included. Available canopy fuel, defined 
as foliage weight plus 50% of small branch weight, was 
calculated allometrically for the overstory plots by imple-
menting Appendix D of the FuelCalc User Guide in R 
(Reinhardt et al. 2006; Lutes 2021). Surface fuel transect 
tallies and depth measurements were converted to sur-
face fuel density measurements following Brown et  al. 
(1982) and averaged by plot.

Airborne lidar data
Airborne lidar were acquired across 1853 and 2944 km2 
of the Kaibab Plateau in 2012 and 2019, respectively 
(Fig.  1; Table  1). The 2012 lidar extent covered forested 
lands within the North Kaibab District of the Kaibab 
National Forest, as well as a portion of Grand Canyon 
National Park. The 2019 lidar extent spanned the entire 
North Kaibab District of the Kaibab National Forest. To 

measure fire-caused change and post-fire vegetation con-
ditions, two smaller acquisitions totaling 175 km2 were 
made in 2020 across the entire 2019 Castle Fire extent 
and a portion of the 2019 Ikes Fire extent (42% coverage 
by 2019 and 2020 lidar). The Castle and Ikes Fires were 
78 km2 and 67 km2 in size, respectively. Point cloud data, 
with points classified as ground or nonground, were 
delivered by vendors as tiled LAS files.

Point cloud data were processed to create vegetation 
metrics with the LAStools (Isenburg 2021) and R (R Core 
Team  2021) software packages. Points were normal-
ized to heights above ground with the “lasheight”  LAS-
tools function and vegetation metrics were calculated 
with “lascanopy” LAStools function (Table  2). Metrics 
were calculated for circular fixed-radius (radii = 10 m) 
overstory plot extents coincident with 2012 and 2019 
lidar data (N = 69), and for circular areas encompassing 
15.24-m surface fuel transects (N = 153), to be used for 
predictive modeling. Metric grids with a spatial resolu-
tion of 20 m were also created by binning lidar points into 
20-m grid cells (step = 20) across lidar extents with “las-
canopy.” These grids were used for mapping. Topographic 
metrics based on vendor-supplied digital terrain models 
(DTM) were created at 20-m spatial resolution with the 
“raster” and “spatialEco” R packages (Table  2; Hijmans 
2021a; Evans 2021). Topographic metric values at plot 
locations were extracted for use in predictive modeling.

Landsat fire history data
We used the Monitoring Trends in Burn Severity (MTBS) 
database (1984–2019; Eidenshink et  al. 2007) coinci-
dent with the study area (Fig. 1) to create years-since-fire 
(YSF) and number-of-past-fire (NPF) grids for the years 
2012 and 2019. Grids were created by converting MTBS 

Table 1  Airborne lidar acquisition parameters for each acquisition

Parameter Acquisition year

2012 2019 2020

Vendor Watershed Sciences, Inc. Atlantic Technical Applications 
& Consulting, LLC

Platform Cessna Caravan PACVX (N750VX) Cessna Turbo Utility 206

Sensor Leica ALS50 Phase II and ALS60 Optech Galaxy Prime Optech Galaxy T500

Acquisition dates Aug. 25–Sept. 15, 2012 June 27–Jul. 3, 2019 Sept. 30–Oct. 2, 2020

Survey Altitude (AGL) 900–2000 m 1800 m 961–1066 m

Footprint diameter 21–45 cm 45 cm 24–27 cm

Scan frequency 49–66 Hz 53 Hz 110–113 Hz

Pulse rate of scanner 50–106 kHz 450 kHz 550 kHz

Laser wavelength 1064 nm 1064 nm 1064 nm

Mean pulse density ≥ 8 pulses m− 2 ≥ 8 pulses m− 2 9–20 pulses m− 2

Total area surveyed 1853 km2 2944 km2 175 km2
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polygons representing fire perimeters to 20-m raster for-
mat and performing raster calculations with the “terra” 
package in R (Hijmans et al. 2021b). YSF and NPF values 
were extracted at plot locations to be used as additional 
predictor variables, and YSF and NPF grids were used for 
mapping.

Random forest modeling
We predicted canopy and surface fuels from airborne 
lidar and Landsat-derived fire history metrics using 

Table 2  Vegetation and topography metrics, derived from 
airborne lidar, and fire history metrics, derived from the 
Monitoring Trends in Burn Severity (MTBS) database. Metrics 
were candidate predictor variables for random forest (RF) 
models predicting fuel loads. Nonground returns are defined 
as those > 0 m above ground. Canopy returns are defined as 
those > 2 m above ground. Understory returns are defined as 
those > 0 and < 2 m above ground

Metric name Description

MAX.gt2 Maximum height of canopy returns

AVG.gt2 Mean height of canopy returns

STD.gt2 Standard deviation of canopy return 
heights

SKE.gt2 Skewness of canopy return heights

KUR.gt2 Kurtosis of canopy return heights

P05.gt2 5th percentile of canopy return 
heights

P10.gt2 10th percentile of canopy return 
heights

P25.gt2 25th percentile of canopy return 
heights

P50.gt2 50th percentile of canopy return 
heights

P75.gt2 75th percentile of canopy return 
heights

P90.gt2 90th percentile of canopy return 
heights

P95.gt2 95th percentile of canopy return 
heights

MAX.lt2 Maximum height of understory 
returns

AVG.lt2 Mean height of understory returns

STD.lt2 Standard deviation of understory 
return heights

SKE.lt2 Skewness of understory return 
heights

KUR.lt2 Kurtosis of understory return heights

P05.lt2 5th percentile of understory return 
heights

P10.lt2 10th percentile of understory return 
heights

P25.lt2 25th percentile of understory return 
heights

P50.lt2 50th percentile of understory return 
heights

P75.lt2 75th percentile of understory return 
heights

P90.lt2 90th percentile of understory return 
heights

P95.lt2 95th percentile of understory return 
heights

D00 Percentage of nonground returns 
0–0.5 m above ground

D01 Percentage of nonground returns 
0.5–1 m above ground

D02 Percentage of nonground returns 
1–2 m above ground

Table 2  (continued)

Metric name Description

D03 Percentage of nonground returns 
2–4 m above ground

D04 Percentage of nonground returns 
4–8 m above ground

D05 Percentage of nonground returns 
8–16 m above ground

D06 Percentage of nonground returns 
16–32 m above ground

D07 Percentage of nonground returns 
32–48 m above ground

D00.lt2 Percentage of understory returns 
0–0.05 m above ground

D01.lt2 Percentage of understory returns 
0.05–0.15 m above ground

D02.lt2 Percentage of understory returns 
0.15–0.5 m above ground

D03.lt2 Percentage of understory returns 
0.5–1 m above ground

D04.lt2 Percentage of understory returns 
1–2 m above ground

CURV.plan Planform curvature (Zevenbergen 
and Thorne 1987)

CURV.profile Profile curvature (Zevenbergen and 
Thorne 1987)

CURV.total Total curvature (Zevenbergen and 
Thorne 1987)

DEM Elevation

HLI Heatload index (Eq. 3 of McCune 
and Keon 2002)

SLOPE Slope (degrees)

SCOSA Slope * cosine(aspect) (Stage 1976)

SSINA Slope * sin(aspect) (Stage 1976)

TPI Topographic position index (Hij‑
mans 2021a)

TRASP Transformed aspect (1-cosine(aspect 
– 30))/2) (Roberts and Cooper 1989)

TRI Topographic roughness index (Wil‑
son et al. 2007)

YSF Years since fire (derived from the 
MTBS database, 1984–2019)

NPF Number of past fires (derived from 
the MTBS database, 1984–2019)
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random forest (RF) modeling implemented in the “ran-
domForest” package of R (Breiman 2001; Liaw and 
Wiener, 2002; R Core Team  2021). Response variables 
included available canopy fuel, 1- to 1000-h fuels, lit-
ter and duff, and total surface fuel (sum of 1- to 1000-
h, litter and duff fuels). Candidate predictor variables 
included the airborne lidar and fire history metrics listed 
in Table 2.

For each response variable, we identified the most 
important predictor variables using the “rf.modelSel” 
routine of the “rfUtilities” R package (Evans and Mur-
phy 2018; Murphy et al. 2010), which computes normal-
ized predictor variable importance scores (MIR) that 
range from 1 (most important) to zero (least important). 
To reduce possible bias towards selection of highly cor-
related predictor variables (Strobl et  al. 2008), we con-
sidered only one predictor variable of highly correlated 
predictor variable pairs or sets (r > 0.9) when running the 
“rf.modelSel” routine, which we ran with various pre-
dictor variable sets. RF models were run in regression 
mode with the default values of 500 trees (ntree = 500) 
and the number of variables at each node split set to the 
total number of candidate predictor variables (p) divided 
by three (mtry = p/3). Model performance was assessed 
with out-of-bag error estimates. Final RF models for each 
of the four response variables included only the most 
important, not highly correlated, predictor variables.

Fuel map creation and analysis
Final RF models predicting available canopy fuel and total 
surface fuel were applied to 20-m metric grids to create 
maps of these two fuel variables across each lidar acqui-
sition (years 2012, 2019, 2020). We analyzed 2012 and 
2019 predicted fuel maps by time since fire, as recorded 
by MTBS-derived YSF grids, and forest type, as mapped 
by LANDFIRE Existing Vegetation Type (EVT) grids 
(LANDFIRE 2014, 2016). We explored linear and various 
nonlinear models for describing relationships between 
predicted fuel maps and YSF.

Consumption was estimated across the 2019 Castle 
Fire extent and a portion of the 2019 Ikes Fire extent by 
differencing 2019 and 2020 predicted fuel maps. To test 
whether consumption was related to burn severity, we 
compared consumption grids with MTBS differenced 
Normalized Burn Ratio (dNBR) grids, indicators of 
burn severity (Key and Benson 2006). Total and average 
consumption for the Castle Fire and portion of the Ikes 
Fire were estimated by summing and averaging mapped 
consumption estimates within fire extents. Confidence 
intervals for total consumption were created by multiply-
ing total consumption estimates by percent root mean 
square error (%RMSE) values from RF models. %RMSE 
was defined as the square root of the mean of the squared 

residuals, divided by the mean of the observed fuel val-
ues. Grid cells within the 2018 Stina Fire extent were 
excluded from the calculation of consumption averages 
and totals for the Ikes Fire.

Results
Random forest models predicting fuel loads
Available canopy fuel ranged from 0.9 to 16.5 Mg ha− 1 
and averaged 6.9 Mg ha− 1 across the 69 fixed-radius 
plots. Our RF model explained 50% of the variation in 
available canopy fuel (Fig.  2). Variables describing can-
opy height distribution (SKE.gt2, KUR.gt2, P10.gt2, P50.
gt2) and density of lower vegetation (D00, D03, D02.lt2) 
as well as one topographic interaction variable between 
slope and aspect (SSINA) were important predictors of 
available canopy fuel (Table 3).

Across the 153 fuel transects, 1- to 1000-h fuels ranged 
from 2.1 to 178.6 Mg ha− 1 and averaged 45.8 Mg ha− 1, 
duff and litter ranged from 1.4 to 103.6 Mg ha− 1 and aver-
aged 36.9 Mg ha− 1, and total surface fuels ranged from 7.7 
to 237.6 Mg ha− 2 and averaged 82.7 Mg ha− 1. RF models 
explained 39% of the variation in 1- to 1000-h fuels, 59% 
of the variation in litter and duff, and 48% of the variation 
in total surface fuels (Fig. 2). Lower canopy height (P05.
gt2), understory density (D01, D00.lt2), elevation (DEM), 
and number of past fires (NPF) were important predic-
tors of 1- to 1000-h fuels that were included in the final 
RF model (Table 3). Understory (D00) and canopy (D03, 
D06) density, elevation (DEM), and fire history (YSF, 
NPF) variables were important predictors of litter and 
duff (Table 3). Important predictors of total surface fuels 
included in the final model were lower canopy height 
(P10.gt2), understory height (P90.lt2), understory density 
(D02.lt2, D03.lt2), elevation (DEM), and fire history (YSF, 
NPF) variables (Table 3).

Fuel and consumption map analyses
Predicted available canopy fuel maps varied with 
LANDFIRE EVT as expected, with greater available 
canopy fuels in ponderosa pine, mixed-conifer, and 
spruce-fir forests on the Kaibab Plateau, and less avail-
able canopy fuels in piñon-juniper woodlands and 
shrublands at lower elevations (Fig.  3). There was no 
significant relationship between available canopy fuel 
and years since fire.

Predicted total surface fuel maps showed variation 
related to LANDFIRE EVT and fire history; ponderosa 
pine forests and recently burned areas tended to have 
lower total surface fuel loads (Fig.  3). Total surface fuel 
loads were positively and significantly related to years 
since fire (Fig.  4). Three-parameter asymptotic models 
described the relationship between predicted total sur-
face fuels and years since fire slightly better than linear 
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models, with R2 values ranging from 0.10 to 0.23. The 
response of surface fuel to time since fire followed an 
asymptote towards stable fuel levels of approximately 
90–130 Mg ha− 1 at 10–15 years post-fire (Fig.  4). More 
observations (20-m pixels) were available in areas 
that burned between 1 and 15 years previously, with 

relatively fewer observations available for areas that 
burned > 15 years previously.

Predicted surface fuel consumption averaged 16.1 
and 14.0 Mg ha− 1 for the Castle and Ikes Fires, respec-
tively (Fig.  5). Total surface fuel consumed by the 
Castle Fire and the portion of the Ikes Fire where 

Fig. 2  Observed versus predicted available canopy (N = 69) and surface (N = 153) fuel loads. Fuel loads were predicted from airborne lidar and fire 
history metrics at field plot locations with random forest (RF) models. Mean bias error (MBE) is the mean of the predicted values minus the mean of 
the observed values. Root mean square error (RMSE) is the square root of the mean of the squared residuals, where residuals are observed minus 
predicted values. 1:1 lines are shown in black, and fit lines are shown in gray. MBE and RMSE are in units of Mg ha− 1

Table 3  Important predictors included in final models and percent variance explained for each fuel response variable. Predictor 
variables are ordered by importance, and normalized predictor variable importance scores (MIR) ranging from 1 (most important) to 
zero (least important) are given in parentheses after each predictor variable. See Table 2 for predictor variable definitions

Response variable Important predictors Var. Exp. (%)

Available canopy fuel P10.gt2 (1), SKE.gt2 (0.6), D03 (0.6), P50.gt2 (0.5), KUR.gt2 (0.4), D00 (0.4), D02.lt2 (0.3), SSINA (0.3) 50

1- to 1000-h fuels DEM (1), P05.gt2 (1), D01 (0.6), D00.lt2 (0.6), NPF (0.3) 39

Litter and duff DEM (1), YSF (0.6), NPF (0.4), D06 (0.3), D03 (0.3), D00 (0.2), 59

Total surface fuel DEM (1), D03.lt2 (0.6), D02.lt2 (0.5), P90.lt2 (0.5), P10.gt2 (0.5), YSF (0.3), NPF (0.2) 48
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pre- and post-fire lidar data were available was esti-
mated to be 125.3 ± 54.6 and 27.6 ± 12.0 Gg, respec-
tively. Predicted canopy fuel consumption averaged 
− 0.3 Mg ha− 1 across both fires, i.e., on average, avail-
able canopy fuel increased between 2019 and 2020. For 
areas that burned at high severity, predicted canopy 
fuel consumption averaged 0 and 0.09 Mg ha− 1 for the 
Castle Fire and portion of the Ikes Fire, respectively. 
Predicted canopy fuel consumption for the portion of 
the Ikes Fire totaled 0.003 ± 0.001 Gg. The 2018 Stina 
Fire extent (not included in consumption averages and 
totals) was apparent in the 2019 Ikes Fire extent as an 
area of “negative” consumption (Fig. 5).

Surface fuel consumption grids were positively cor-
related with the dNBR grids, with Pearson correla-
tion coefficients of 0.33 and 0.37 for the Castle and 
Ikes Fires, respectively (Fig. 5). Average predicted sur-
face fuel consumption varied by MTBS burn sever-
ity class, with smallest average consumption in the 

unburned-to-low severity class and greatest average 
consumption in the high severity class (Table 4). Can-
opy fuel consumption and dNBR grids were uncor-
related, with Pearson correlation coefficients of 0 and 
0.04 for the Castle and Ikes Fires, respectively.

Discussion
Our results show an encouraging improvement in esti-
mating and mapping fuel loads and consumption with 
airborne lidar, especially for subcanopy fuels that have 
been poorly characterized with remote sensing in the 
past. We predicted canopy and surface fuel loads with 
moderate accuracy (39–59%) including both airborne 
lidar and fire history predictor variables. Our analysis 
focused on surface fuel loads because fewer previous 
studies have predicted surface fuels with airborne lidar, 
and because canopy fuel available for burning was much 
smaller relative to surface fuel in our study area. Our 
moderate accuracies for surface fuel load prediction with 

Fig. 3  Maps of predicted available canopy fuel in 2019 (A), predicted total surface fuel in 2019 (B), LANDFIRE Existing Vegetation Types in 2016 (C), 
and MTBS fire perimeter polygons from 1984 to 2019 (D). Existing Vegetation Type labels: piñon-juniper (PJ), ponderosa pine (PP), mixed-conifer 
(MC), and spruce-fir (SF)
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airborne lidar are comparable to those of past studies 
(Table 5).

Our RF models showed relatively high predictive 
power for low fuel loads but showed a trend of increased 
error and underprediction for higher fuel loads (Fig.  2). 

Although nonparametric RF models do not require nor-
mally distributed variables, underprediction at the high 
end of fuel gradients might have been caused by field 
data being skewed toward the lower end of fuel gradients. 
Most field data were collected at 10 years or less post-fire, 

Fig. 4  Time series of surface fuel loads derived from overlaying 2012 and 2019 predicted surface fuel load (TSF) maps with years since fire (YSF) 
grids created from the Monitoring Trends in Burn Severity (MTBS) database (1984–2019). Predicted surface fuel loads increased with years since fire, 
with asymptotes where fuel accumulation slowed at approximately 10–15 years post fire. Fit lines for three-parameter asymptotic models are shown 
as red lines. The number of 20-m pixels that went into each distribution is quantified in bars at the bottom of each panel
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for the intent of monitoring post-fire recovery. Includ-
ing more field sampling at the higher end of fuel gradi-
ents in areas that had not recently burned might have 
helped to alleviate this increased error and under predic-
tion of higher fuel loads. We were, however, limited to 
using field data that were not gathered for the intent of 
our modeling analysis, nor did we try to balance samples 
by excluding any of the limited number of available field 
observations.

RF models predicting surface fuel loads included both 
near surface (0–2 m aboveground) and overstory (> 2 m 

above ground) predictor variables, indicating that air-
borne lidar both directly measured variation in near sur-
face fuels and indirectly captured surface fuel variation 
through overstory correlates. Our RF model predicting 
litter and duff, which cannot be directly measured with 
airborne lidar as it does not penetrate the ground surface, 
especially demonstrates the potential of using overstory 
correlates to estimate underlying surface fuels. Others 
have also found that overstory correlates are helpful for 
predicting surface fuel variables with airborne lidar (Price 
and Gordon 2016; Bright et  al. 2017; Stefanidou et  al. 
2020; McCarley et  al. 2020) and have documented rela-
tionships between overstory characteristics and surface 
fuel loads (Prescott 2002; Lydersen et  al. 2015; López-
Senespleda et al. 2021).

One topographic variable, elevation, was an espe-
cially important predictor of surface fuel loads across our 
study area on the Kaibab Plateau in Arizona. Surface fuel 
increased with elevation, and we predicted smaller surface 
fuel loads in ponderosa pine forests relative to higher eleva-
tion forest types. This pattern is likely because of increasing 
annual precipitation with elevation that results in greater 
vegetation growth, ecosystem productivity, and therefore 
fuel loads. Environmental gradients such as elevation, when 

Fig. 5  Maps of predicted surface fuel consumption and MTBS burn severity, as indicated by the differenced Normalized Burn Ratio (dNBR), for the 
2019 Castle Fire and a portion of 2019 Ikes Fire. Surface fuel consumption was positively correlated with burn severity. The 2018 Stina Fire perimeter 
within the 2019 Ikes Fire is represented by a black line

Table 4  Average and standard deviation (in parentheses) of 
predicted surface fuel consumption, in Mg ha− 1, by MTBS burn 
severity class for the 2019 Castle and Ikes Fires

MTBS burn severity class Fire

Castle Ikes

Unburned to low 10.7 (11.3) 8.7 (12.0)

Low 17.5 (15.8) 15.6 (15.6)

Moderate 29.6 (19.3) 29.8 (20.3)

High 41.5 (21.4) 30.1 (19.0)
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combined with other data sources, have proven to be useful 
in other fuel mapping efforts (Keane et al. 2000, 2001; Reich 
et al. 2004; Pierce et al. 2012; Lin et al. 2021).

Predicted surface fuel loads varied significantly with 
time since fire, as measured by MTBS Landsat products, 
across our study area (Fig. 4). Although Landsat-derived 
fire history variables were not as important as lidar vari-
ables describing vegetation or elevation, they helped 
explain variation in surface fuels unexplained by lidar 
variables. Mapped total surface fuel loads increased with 
time since fire until about 10–15 years post fire, after 
which predicted fuel loads approached a steady state. Rel-
atively fewer pixels had burned between 15 and 31 years 
previously in our study area (Fig. 4) so that the relation-
ship between surface fuel load and time since fire that we 
reported is less reliable for that time period. Nevertheless, 
our asymptotic models are conceptually close to clas-
sic fire-driven fuel accumulation models such as Olson’s 
negative exponential equation (Olson 1963; Birk and 
Simpson 1980; Keane 2015; Zazali et al. 2020). Likewise, 
previous field observation-based studies in ponderosa 
pine forests (Roccaforte et al. 2012) and mixed conifer for-
ests (Dunn and Bailey 2015; Eskelson and Monleon, 2018; 
Stevens-Rumann et  al. 2020) have documented similar 
asymptotic temporal trends in post-fire surface fuel loads 
that reached a steady state at 6–20 years post fire. Fine fuel 
accumulation is the balance between the input and the 
removal of fuels, mainly driven by litterfall and decompo-
sition (Hanan et al. 2022). Litter accumulates on the soil 
until litterfall equals decomposition and accumulation 
stabilizes around a mean steady state (Ewel et  al.  1976). 
Note as well that both decomposition and litterfall are 

complex processes mainly driven by climate, aboveground 
biomass, site, and soil conditions (Prescott 2002; Bez-
korovaynaya 2005; Krishna and Mohan  2017; Neumann 
et al. 2018; Costa et al. 2020). Changes to these can alter 
the system feedbacks and affect the accumulation process 
which would explain the fluctuation of fuel loads over 
the asymptote after a long time since fire (Fig. 4). In our 
study area, regions of lower productivity and therefore 
infrequent burning might also be responsible for seem-
ingly stable fuel loads > 15 years post fire. To our knowl-
edge, few studies have quantified the relationship between 
remote sensing-estimated fuel loads and time since fire. 
In longleaf pine forest in Florida, Hudak et al. (2016) also 
documented meaningful correlations between fuel loads 
estimated from airborne lidar and time since fire.

Differencing pre- and post-fire fuel load maps allowed 
us to estimate fuel consumption across fire extents. Both 
fires were dominated by low severity fire as indicated by 
MTBS dNBR (90–96%), which generally corresponds to 
non-crown fire in this area (Hoff et  al. 2019); therefore, 
on average across fire extents, available canopy fuel was 
greater in 2020 than it was in 2019. Our maps did, how-
ever, document available canopy fuel consumption in areas 
that burned severely, as indicated by dNBR. Low canopy 
fuel consumption (average of 0.07 Mg ha− 1 for pixels that 
burned severely) relative to surface fuel consumption 
(average of 14.0 and 16.1 Mg ha− 1) was expected, as sur-
face fuel loads were an order of magnitude greater. dNBR 
was moderately correlated with surface fuel consump-
tion, but uncorrelated with canopy fuel consumption, 
likely because little to no canopy fuel burned in these fires 
which burned predominantly at low severity. For other 

Table 5  Other studies predicting surface fuel variables from airborne lidar

Authors Year Forest type Location Surface fuel response variable(s) Variance 
explained 
(%)

Pesonen et al. 2008 Spruce and hardwood Finland Downed dead wood volume 61

Jakubowski et al. 2013 Mixed conifer California, USA 1000-h fuel load, fuel bed depth 31, 35

Hudak et al. 2015 Longleaf pine savanna Florida, USA ln(surface fuel load) 44

Price and Gordon 2016 Dry Sclerophyll Forest Australia Surface fuel load 24

Bright et al. 2017 Pine and spruce-fir Colorado, USA Litter and duff, 1- to 100-h, 1000-h, and total surface fuel 
loads

24–32

Stefanidou et al. 2020 Fir Greece Transformed litter, grass/forbs, 1-h, 10-h, and total 
surface fuel loads

60–71

McCarley et al. 2020 Conifer New Mexico 
and Oregon, 
USA

Understory fuel load 16–63

Mauro et al. 2020 Conifer Oregon, USA Downed woody biomass 14

Alonso-Rego et al. 2021 Pine Spain Understory fuel, litter and duff, and downed woody 
debris loads

35–42

Bright et al. (this study) 2022 Pine, mixed-conifer, spruce-fir Arizona, USA Litter and duff, 1- to 1000-h and total surface fuel loads 39–59
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fires where crown fire is more prevalent, dNBR would 
likely be related more strongly to canopy fuel consump-
tion. Our finding of moderate correlation between dNBR 
and surface fuel consumption suggests that dNBR could 
possibly be used as an index of surface fuel consumption 
for low-severity fires, although physically based estimates 
of consumption derived from pre- and post-fire lidar are 
likely superior. Our estimates of average fuel consumption 
(14.0–16.1 Mg ha− 1) and total surface fuel consumption 
(125.3 ± 54.6 and 27.6 ± 12.0 Gg for the Castle and portion 
of the Ikes Fires, respectively) are similar in magnitude but 
less than those of McCarley et  al. (2020), who estimated 
average total fuel consumptions of 45–66 Mg ha− 1 and 
consumption totals ranging from 224 to 713 Gg for a por-
tion of the 2011 Las Conchas Fire (49 km2) in New Mexico 
and the 2012 Pole Creek Fire (108 km2) in Oregon. As mul-
titemporal lidar becomes more common, additional simi-
lar analyses estimating consumption will be possible. Such 
consumption estimates can increase our understanding of 
land/atmosphere exchanges of carbon.

Conclusions
Airborne lidar, when combined with field observations, 
can be used to predict and map canopy and surface fuel 
loads with moderate accuracy across landscapes. We 
found that surface fuel loads were related to time since 
fire and present a remote sensing framework for quanti-
fying landscape temporal dynamics in surface fuel accu-
mulation. Our finding that fuel loads were related to time 
since fire suggests that future work that aims to map fuel 
loads with remote sensing can benefit from considering 
fire and other disturbance history.

Landscape scale fuel load maps derived from active 
remote sensing can provide unbiased geospatial decision 
support information to forest, wildland fire, and wild-
life managers, helping them assess current conditions 
and plan future treatments for wildland fire risk reduc-
tion and long-term ecosystem resilience. As airborne 
lidar becomes more common in forested landscapes, our 
methods can also serve as a framework for estimating 
landscape scale fire emissions and assessing ecosystem 
dependent relationships, such as post disturbance fuel 
loading trajectories. The novel approaches described here 
can be especially useful in landscapes prone to unchar-
acteristically high severity wildfire due to climate change, 
such as the sky islands of the southwestern United States.
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